

Field Characterization of Hydrate-Bearing Core Using X-Ray Computed Tomography

Barry Freifeld, Timothy Kneafsey, Jacob Pruess, and Liviu Tomutsa

Earth Sciences Division

November 5, 2003

Outline

- Motivation
- Portable System
- Results
- Conclusions

Acknowledgments

- LLNL- Dan Schneberk
- USGS- Laura Stern, Steve Kirby
- Ocean Drilling Program- Frank Rack
- Anadarko Petroleum and Maurer Technology Inc.
- DOE/NETL

Outline

- Motivation: Methane Hydrate Research
- Portable System
- Results
- Conclusions

Motivation

- Limited knowledge of hydrate kinetics
- Poor understanding of hydrate/sediment properties

To produce gas from hydrates we need to develop a reliable model for reservoir behavior!

 Can x-ray CT be used to study hydrate kinetics?
 What is the potential for x-ray CT to spatially and temporally resolve hydrate processes?

Initial Experiment Description

Sample Holder

HYDRATE

HYDRATE/ SAND

25% sand, 75% hydrate 40% sand, 60% hydrate

60% sand, 40% hydrate

75% sand, 25% hydrate

- Allow room heat to progressively warm sample
- 3. Acquire periodic images while capturing dissociated methane

Prior work: Mikami et al.

3rd ICGH

Result: X-ray CT can be used to study hydrate kinetics!

Estimating effective heat transport parameters

Stefan Model of CT Experiment

Stefan moving boundary problem provides numerical model to interpret CT data.

CT provides x(t). Solve for K_1 .

Outline

- Motivation
- Portable System: A Cone-Beam System for Imaging Geologic Core
- Results
- Future Plans

Portable X-ray CT

- •Field deployable
- Rapidly characterize cores
- Performance exceeds medical CT systems

ODP Leg 210

Portable System for Geologic Core

- Microfocal X-ray Source 45–130 kV, 0.5mA
- Cylindrical Sample
 1.5 m _ 9.5 cm
- Core rotated on vertical axis
- 15 cm image intensifier
- X-ray filter for multi-energy scanning
- Attenuation compensator
- Cabinet safe
- Resolution 200µm

Portable System for Geologic Core

- Microfocal X-ray Source
 —45–130 kV, 0.5mA
- Cylindrical Sample
 —1.5 m _ 9.5 cm
- Core rotated on vertical axis
- 15 cm image intensifier
- X-ray filter for multi-energy scanning
- Attenuation compensator
- Cabinet safe
- Resolution 200µm

Portable System for Geologic Core

- Microfocal X-ray Source
 —45–130 kV, 0.5mA
- Cylindrical Sample
 —1.5 m _ 9.5 cm
- Core rotated on vertical axis
- 15 cm image intensifier
- X-ray filter for multi-energy scanning
- Attenuation compensator
- Cabinet safe
- Resolution 200µm

Outline

- Motivation
- Portable System
- Results: Images and analysis of hydrate experiments and geologic core
- Future Plans

Hot Ice #1

- Anadarko Petroleum/Maurer Technology/DOE Methane hydrate research well
- Drilled down to 1403' March-April 2003
- CT Imaged 159 of 391 Core
 Tubes (approx 90cm core/tube)

Core Images from Hot Ice #1

density (g/cc)

180 Images

density (g/cc)

Density logs are assembled from image montages.

Experimental Method

1. Hydrate/Sediment is stabilized in a pressure vessel.

2. Baseline CT images are acquired.

- 3. Sample is brought out of hydrate stability region.
- 4. Images are periodically acquired as hydrate dissociates.
- 5. Differential image analysis performed.

Equipment

LAWRENCE BERKELEY NATIONAL LABORATORY

Experiment #1

Progression of Hydrate Dissociation

Baseline

13 min

33 min

41 min

58 min

LAWRENCE BERKELEY NATIONAL LABORATORY

Density Change During Dissociation

Theoretical change in density: -7.7% (Based on initial density)

Estimated from X-ray Images: -8.6%

Experiment 2

Baseline

8 min

19 min

28 min

Sand + Porous Hydrate + Ice

35 min

44 min

64 min

Density Changes During Dissociation

95% Confidence Intervals

Density Calibration			
	_(g/cc)	MEAN	_
SAND	1.57	1.013	0.041
ICE	.917	.702	0.035
POROUS HYDRATE	.642	.601	0.044

Confidence Intervals:

Material Density

Cone Beam X-ray CT Accuracy

Cube Size (mm)	95% Confidence Interval _(g/cc)
1	±0.07
2	±0.03
3	±0.02
4	±0.01

Conclusions

- X-ray CT allows rapid characterization of geologic core, revealing sedimentary structures, alterations, fractures, and flow channels and barriers.
- Gas Hydrate dissociation can be both spatially and temporally imaged using x-ray CT.
- A portable x-ray CT can discern density changes of 0.04 g/cc in a 3mm cube. ~30% change in hydrate saturation in a 0.03cc nodule of hydrate.